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MIXED PROBLEMS OF WARING’S TYPE

J. Brüdern, K. Kawada and T. D. Wooley1

1. Introduction. In the first part of this series of papers (see Brüdern, Kawada
and Wooley [2]), we introduced an approach to additive problems in which one seeks
to establish that almost all natural numbers in some fixed polynomial sequence are
represented in a prescribed manner, thereby deriving non-trivial estimates for ex-
ceptional sets in thin sequences. We illustrated our methods by obtaining upper
bounds for the exceptional sets associated with the representation of integers from
quadratic, or cubic, polynomial sequences by sums of six cubes of positive integers.
In subsequent parts of the series (see Brüdern, Kawada and Wooley [3, 4, 5]), we
adapted our core methods so as to tackle problems associated with the binary Gold-
bach problem, the expected asymptotic formula for the number of representations,
and lower bounds for the number of integers represented in some prescribed man-
ner. As is apparent from the opening part of this series, our methods are of great
flexibility. The aim of the present paper is to provide variants of the ideas developed
in the preceding opera, and here we will be concerned solely with methods which
provide estimates for the size of exceptional sets in representation problems. The
discerning reader will recognise that in several of the more exotic problems men-
tioned below, it is the existence of a non-trivial estimate for the exceptional set in
question which is of interest. The investigation of the sharpest attainable estimate
for this exceptional set should be politely deferred beyond any future occasion.

We begin by exploring exceptional sets in polynomial sequences for additive
problems involving mixed powers. Here one finds that sharp mean value estimates
for mixed sums of powers, familiar to aficionados of the circle method, lead to
surprisingly strong conclusions. Our first results, which we establish in §2, involve
problems containing a block of four cubes. Here and elsewhere, it is convenient
to describe a polynomial φ ∈ Q[t] as being an integral polynomial if, whenever the
parameter t is an integer, then the value φ(t) is also an integer.
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Theorem 1.1. Suppose that φ is an integral quadratic polynomial with positive
leading coefficient. Denote by Eφ(X) the number of integers n with 1 ≤ n ≤ X
such that φ(n) possesses no representation as the sum of five cubes and a sixth power
of positive integers. Then for each positive number ε, one has Eφ(X) � X37/42+ε.
Here, the implicit constant in Vinogradov’s notation may depend on φ and ε.

In Theorem 1.1 of Brüdern, Kawada and Wooley [2], we established that almost
all values of a fixed integral quadratic polynomial, with positive leading coefficient,
are the sum of six cubes of positive integers. As an immediate consequence of
Theorem 1.1 above, we find that one may specialise one of the latter cubes to
be a sixth power, and nonetheless derive a similar conclusion. For the purposes
of illustration, in the following theorem we record several further applications of
estimates involving the block of four cubes.

Theorem 1.2. (a) Let φ2 be an integral quadratic polynomial with positive leading
coefficient. Then for almost all natural numbers n, one has that φ2(n) is the sum
of any one of the following combinations of powers:

(i) five cubes and a k-th power, for 3 ≤ k ≤ 20;
(ii) four cubes and two biquadrates;
(iii) four cubes and two fifth powers.

(b) Let φ3 be an integral cubic polynomial with positive leading coefficient. Then
for almost all n, one has that φ3(n) is the sum of a square, four cubes and a sixth
power.

We remark that in part (i) of Theorem 1.2(a), the permissible range for k may
certainly be considerably extended with greater effort, and indeed our calculations
indicate that values of k in the mid-forties are permissible. We note also that
explicit estimates for the exceptional sets implicit in the statement of Theorem
1.2 may be inferred from the concluding display of the proof of Theorem 1.2 in
§2 below. We do not claim, however, that these estimates are close to the best
attainable via modern technology.

It is possible to modify the argument underlying the proofs of Theorems 1.1 and
1.2 so as to replace the block of four cubes by a new block of three cubes, together
with a fourth, fifth or sixth power. Since the situation with three cubes and a
sixth power is the most difficult, we illustrate our ideas with this case and leave the
reader to fill in the necessary details for the easier cases in which the sixth power
is replaced by a fourth or fifth power. In §3 we establish the (somewhat exotic)
conclusions contained in the following theorem. We caution the reader that our
aim here is mostly to illustrate ideas.

Theorem 1.3. (a) Let φ2 be an integral quadratic polynomial with positive leading
coefficient. Then for almost all natural numbers n, one has that φ2(n) is the sum
of either of the following combinations of powers:

(i) four cubes and two sixth powers;
(ii) three cubes, two biquadrates and a sixth power.

(b) Let φ3 be an integral cubic polynomial with positive leading coefficient. Then,
for almost all n, one has that φ3(n) is the sum of a square, three cubes and two
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sixth powers.
(c) Let φ4 be an integral quartic polynomial with positive leading coefficient. Then,
for almost all n, one has that φ4(n) is the sum of a square, three cubes, a biquadrate
and a sixth power.
(d) Let φ6 be an integral sextic polynomial with positive leading coefficient. Then,
for almost all n, one has that φ6(n) is the sum of a square, four cubes and a sixth
power.

A rather different strategy may be adopted in certain problems involving squares.
We illustrate such ideas in §4 by considering values of cubic polynomials represented
as the sum of a square and four cubes of positive integers.

Theorem 1.4. Let φ3 be an integral cubic polynomial with positive leading coeffi-
cient. Then, for almost all natural numbers n, one has that φ3(n) is the sum of a
square and four cubes of positive integers.

Next we consider polynomial sequences represented by sums of k-th powers, for
larger k. When φ is an integral polynomial with positive leading coefficient, denote
by G+

φ (k) the least number s with the property that for almost all natural numbers
n, one has a representation of φ(n) in the shape

xk
1 + xk

2 + · · ·+ xk
s = φ(n), (1.1)

with xi ∈ N (1 ≤ i ≤ s). Also, when d is a natural number, define G+
d (k) to be the

supremum, taken over all integral polynomials φ of degree d with positive leading
coefficient, of G+

φ (k). In §5 we consider the representation of polynomial sequences
of degree d ≥ 2, and in §6 we refine the associated estimates in the quadratic case.
Taken together, our conclusions may be summarised as follows.

Theorem 1.5. Suppose that d = 1 or 2. Then for large k one has

G+
d (k) ≤ 1

2k(log k + log log k + cd + o(1)),

where

cd =
{

2, when d = 1,
5
2 + log 2, when d = 2.

When d > 2, on the other hand, one has

G+
d (k) ≤ (1− 1/d)k(log k + log log k + O(1)).

We remark that when d = 1, the conclusion of Theorem 1.5 follows immediately
from the proof of Theorem 1.4 of Wooley [20] (or see (6.2) and (6.3) below) via
the standard method, and thus we confine our proof of Theorem 1.5 to the cases in
which d ≥ 2. It is curious that the number of variables required almost always to
obtain a representation in the shape (1.1) is almost the same, in the current state
of knowledge, for φ of degree both 1 and 2. For quadratic polynomials φ, the work
of Vaughan and Wooley [14, 15, 16, 17] may be utilised within the methods of §6
so as to obtain reasonable explicit estimates for G+

φ (k).
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Theorem 1.6. When 3 ≤ k ≤ 20, one has G+
2 (k) ≤ H2(k), where H2(k) denotes

the value presented in the table below.

We note that the bound for G+
2 (3) presented here follows from Theorem 1.1 of

Brüdern, Kawada and Wooley [2]. We have taken the liberty of recording in the
table also values of H1(k) for which G+

1 (k) ≤ H1(k). These additional estimates
follow from the classical theory of Waring’s problem.

k 3 4 5 6 7 8 9 10 11
H1(k) 4 15 9 12 17 32 25 30 34
H2(k) 6 15 12 16 21 32 30 36 41

k 12 13 14 15 16 17 18 19 20
H1(k) 38 42 46 50 64 59 63 67 71
H2(k) 45 50 54 59 65 69 74 78 83

Finally, we remark that when k is equal to 4 or 8, the conclusion of Theorem 1.6
may be strengthened in the manner presented below. We briefly present details of
the associated proof when k = 4, but leave the case k = 8 as an exercise for the
reader.

Theorem 1.7. Suppose that φ2 is an integral quadratic polynomial with positive
leading coefficient. Let t be a non-negative integer.

(i) For almost all natural numbers n satisfying φ2(n) ≡ r (mod 16), for some r with
1 ≤ r ≤ 8 + t, one has that φ2(n) is the sum of 8 + t biquadrates.

(ii) For almost all natural numbers n satisfying φ2(n) ≡ r (mod 32), for some r with
1 ≤ r ≤ 26 + t, one has that φ2(n) is the sum of 26 + t eighth powers.

Throughout, the letters ε and η will denote sufficiently small positive numbers.
We take P to be the basic parameter, a large real number depending at most
on ε, η and any coefficients of implicit polynomials if necessary. We use � and
� to denote Vinogradov’s well-known notation, implicit constants depending at
most on ε, η and implicit polynomials. Sometimes we make use of vector notation.
For example, the expression (c1, . . . , ct) is abbreviated to c. Also we write [x] for
the greatest integer not exceeding x, and dxe for the least integer y with y ≥ x.
Summations start at 1 unless indicated otherwise. In an effort to simplify our
analysis, we adopt the following convention concerning the parameter ε. Whenever
ε appears in a statement, we assert that for each ε > 0 the statement holds for
sufficiently large values of the main parameter. Note that the “value” of ε may
consequently change from statement to statement, and hence also the dependence
of implicit constants on ε.

We thank the referee for illuminating comments.

2. Problems with a block of four cubes. We begin our investigation of sums
of mixed powers by establishing Theorems 1.1 and 1.2. Here we require some
familiar estimates for mean values involving mixed powers which we summarise in
the following lemma. Here and elsewhere, we write e(z) for e2πiz.
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Lemma 2.1. Suppose that X is a large real number. When 1 ≤ i ≤ 3, let φi denote
an integral polynomial with positive leading coefficient of degree di, let κi be a fixed
positive real number, let Ai ⊆ N, write Xi = X1/di and Ai = card(Ai ∩ [1, κiXi]),
and define

Θi(α;X) =
∑

x∈Ai∩[1,κiXi]

e(αφi(x)).

Then provided that di ≥ 2 (i = 1, 2, 3), one has∫ 1

0

|Θ1(α;X)Θ2(α;X)Θ3(α;X)|2dα � Xε(A2
2A

2
3 + A1(A2

3 + A2A3)). (2.1)

Proof. By orthogonality, the mean value on the left hand side of (2.1) is equal to
the number of solutions of the diophantine equation

3∑
i=1

φi(xi) =
3∑

i=1

φi(yi),

with xi, yi ∈ Ai ∩ [1, κiXi] (i = 1, 2, 3). On observing that the polynomials φi(x)−
φi(y) are divisible by x − y for i = 1, 2, 3, the desired conclusion is immediate on
separating out the diagonal terms, and employing an elementary estimate for the
divisor function.

Corollary. When d1 = 2 and d−1
2 + d−1

3 ≤ 1/2, one has∫ 1

0

|Θ1(α;X)Θ2(α;X)Θ3(α;X)|2dα � X1/d1+1/d2+1/d3+ε.

Proof. Note that Ai � X
1/di

i and apply Lemma 2.1.

Our basic tool in the proofs of Theorems 1.1 and 1.2 is a certain mean value
estimate for a block of four cubic exponential sums. In order to describe this
fundamental estimate, we require some notation. When X and Y are positive
numbers, we denote the set of Y -smooth numbers not exceeding X by

A(X, Y ) = {n ∈ [1, X] ∩ Z : p prime, p|n ⇒ p ≤ Y }.

We take P to be a large real number, write η for a sufficiently small positive number
depending at most on ε, and consider a real number R with P η/2 < R ≤ P η. We
write Q = P 6/7, Y = P 1/7, and define the generating functions

f(α; p) =
∑

P<x≤2P
p-x

e(αx3), g(α) =
∑

Q<y≤2Q

e(αy3), h(α) =
∑

z∈A(Q,R)

e(αz3).
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We then define, as our block of four cubic exponential sums,

F(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

f(α; p)g(αp3)h(αp3)2, (2.2)

where the summation is over prime numbers.
In order to facilitate our application of the circle method, we define a generic

Hardy-Littlewood dissection as follows. When X is a real number with 1 ≤ X ≤ P ,
we define the set of major arcs M(X) to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ XP−3}, (2.3)

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We define the corresponding set of minor arcs
by m(X) = [0, 1) \M(X). For brevity, it is convenient to write also

M = M(P 3/4), m = m(P 3/4),

and, with L = (log P )1/100,

N = M(L), n = m(L).

Also, when X is a positive number, we write

K(X) = M(2X) \M(X).

For the purposes of our exposition here, it suffices to consider the major arc
approximations to f(α; p) and g(αp3). Thus, we define

S(q, a) =
q∑

r=1

e(ar3/q), S(q, a, p) = S(q, a)− p−1S(q, ap3),

and

v(β) =
∫ 2P

P

e(βγ3)dγ, w(β) =
∫ 2Q

Q

e(βγ3)dγ.

Next define the functions f∗p and g∗p for α ∈ [0, 1) by taking

f∗p (α) = q−1S(q, a, p)v(α− a/q), g∗p(α) = q−1S(q, ap3)w(p3(α− a/q)),

when α ∈ M(q, a) ⊆ M(P ), and by taking each of these functions to be zero
otherwise. Finally, we write

F1(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

f∗p (α)g∗p(α)h(αp3)2.

The crucial mean value estimates stemming from our block of four cubes may
be summarised as follows.
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Lemma 2.2. One has ∫
m

|F(α)|2dα � Y 2Q6P−19/14

and ∫
M

|F(α)−F1(α)|2dα � Y 2Q6P−19/14.

Proof. This is Lemma 3.2 of Brüdern, Kawada and Wooley [2].

Lemma 2.3. Suppose that X is a real number with 1 ≤ X ≤ Q. Then∫
M(X)

|F1(α)|dα � XεY Q3P−2(log Y )−1.

Proof. This is Lemma 3.3 of Brüdern, Kawada and Wooley [2].

Finally, we augment our stockpile of exponential sums by writing, for each nat-
ural number k,

Pk = P 3/k and fk(α) =
∑

Pk<x≤2Pk

e(αxk). (2.4)

Properly equipped at last, we launch our proof of Theorem 1.1.

The proof of Theorem 1.1. Let φ2 ∈ Q[t] be an integral quadratic polynomial with
positive leading coefficient. We take

6P 3 = φ2(N), (2.5)

and denote by Z2(N) the set of integers n with N < n ≤ 2N for which the
diophantine equation

φ2(n) = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x6

6

has no solution in positive integers x1, . . . , x6. We aim to show that card(Z2(N)) �
N37/42+ε, and from this the conclusion of Theorem 1.1 follows by summing over
dyadic intervals.

Write
K2(α) =

∑
n∈Z2(N)

e(αφ2(n)). (2.6)

Then it follows from the definition of Z2(N) that∫ 1

0

F(α)f3(α)f6(α)K2(−α)dα = 0. (2.7)
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On recalling Theorem 4.1 of Vaughan [12] for the purpose of analysing the behaviour
of f3(α) and f6(α) on the set M(q, a) ⊆ N, the argument of the proof of Lemma 2.1
of Brüdern, Kawada and Wooley [2] is readily modified to provide in this instance
the lower bound, uniformly for 5P 3 ≤ m ≤ 64P 3,∫

N

F(α)f3(α)f6(α)e(−αm)dα � Y Q3P−2(log P )−1f3(0)f6(0).

Thus, on writing
H(α) = f3(α)f6(α)K2(−α), (2.8)

we deduce from (2.6), (2.7) and (2.8) that∣∣∣ ∫
n

F(α)H(α)dα
∣∣∣� Y Q3P−2(log P )−1H(0). (2.9)

Next we analyse the contribution arising from the set n ∩M. By the methods
of Chapters 2 and 4 of Vaughan [12] (see, for example, equations (2.7), (2.8) and
(3.11) of Brüdern, Kawada and Wooley [2]), one has for X ≤ P 3/4 the estimate

sup
α∈K(X)

|f3(α)| � PX−1/3,

and hence it follows from Lemma 2.3 that for X ≤ P 3/4, one has∫
K(X)

|F1(α)H(α)|dα � H(0)X−1/3

∫
M(2X)

|F1(α)|dα

� Y Q3P−2X−1/4(log Y )−1H(0).

On summing over X = 2lL ≤ P 3/4 with l ≥ 0, we obtain the upper bound∫
n∩M

|F1(α)H(α)|dα � Y Q3P−2L−1/4(log Y )−1H(0).

On recalling (2.9), we may conclude thus far that∫
m

|F(α)H(α)|dα+
∫

M

|(F(α)−F1(α))H(α)|dα � Y Q3P−2(log Y )−1H(0). (2.10)

By applying Schwarz’s inequality to (2.10), and applying Lemma 2.2, we find that

Q3Y P−2(log Y )−1H(0)

�
(∫

m

|F(α)|2dα +
∫

M

|F(α)−F1(α)|2dα
)1/2(∫ 1

0

|H(α)|2dα
)1/2

� (Y 2Q6P−19/14)1/2
(∫ 1

0

|H(α)|2dα
)1/2

. (2.11)
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Consequently, it follows from the corollary to Lemma 2.1 that

H(0) � P 37/28(log P )(P 3+ε)1/2 � P 79/28+ε,

whence by (2.4), (2.5) and (2.8), we may conclude that

card(Z2(N)) � P 79/28+ε(P3P6)−1 � N37/42+ε.

The conclusion of Theorem 1.1 follows immediately.

The argument of the proof of Theorem 1.1 is readily adapted to tackle that of
Theorem 1.2.

The proof of Theorem 1.2. We dispose of all the cases of the theorem simultane-
ously. Let φi ∈ Q[t] denote an integral polynomial of degree i with positive leading
coefficient. When i = 2 or 3, we denote by Z l,k

i (N) the set of all integers n with
N < n ≤ 2N for which the diophantine equation

φi(n) = x3
1 + x3

2 + x3
3 + x3

4 + yl + zk

has no solution in positive integers x1, . . . , x4, y, z. We aim to show that, for ap-
propriate choices of (i, l, k), one has card(Z l,k

i (N)) = o(N), whence the conclusions
of Theorem 1.2 will follow immediately by summing over dyadic intervals.

Define the exponential sum Ki(α) = Kl,k
i (α) by

Ki(α) =
∑

n∈Zl,k
i (N)

e(αφi(n)). (2.12)

Also, define the parameter P by means of the relation

6P 3 = φi(N), (2.13)

and define the exponential sums fj(α) as in (2.4). We then put

H(α) = fl(α)fk(α)Ki(−α). (2.14)

Applying the arguments of the second paragraph of the proof of Theorem 1.1 above,
and making use once more of Theorem 4.1 of Vaughan [12], we again obtain the
lower bound (2.9). On the other hand, by Weyl’s inequality (see Lemma 2.4 of
Vaughan [12]) together with Lemma 2.8, Theorem 4.1 and Lemmata 4.3–4.5 of
Vaughan [12], one has for X ≤ P 3/4 the estimate

sup
α∈K(X)

|fl(α)| � PlX
ε−(l2l)−1

.

Thus we may apply the argument of the third paragraph of the proof of Theorem
1.1 to conclude that the upper bound (2.11) holds. Temporarily writing Zl,k

i =
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card(Z l,k
i (N)), in the interest of clarity, and recalling (2.12) and (2.14), we therefore

deduce from Lemma 2.1 that when i = 2 and 2 ≤ l ≤ k, one has

fl(0)fk(0)Zl,k
2 = H(0)

� P 37/28+ε(Zl,k
2 (P 6/k + P 3/k+3/l) + P 6/k+6/l)1/2,

and when i = 3 and k ≥ 3, similarly,

f2(0)fk(0)Z2,k
3 = H(0)

� P 37/28+ε(P 3/2(Z2,k
3 P 3/k + P 6/k) + (Z2,k

3 )2P 6/k)1/2.

A modest computation consequently leads from (2.4) and (2.13) to the estimates

card(Z3,k
2 (N)) � N23/21−2/k+ε + N37/42+ε, card(Z4,4

2 (N)) � N37/42+ε,

card(Z5,5
2 (N)) � N101/105+ε, card(Z2,6

3 (N)) � N9/14+ε.

The conclusions of Theorem 1.2, with explicit estimates for the associated excep-
tional sets, follow immediately.

3. Problems with a block of three cubes and a kth power. As indicated
in the introduction, it is possible to modify the argument underlying the proofs of
Theorems 1.1 and 1.2 so as to replace the block F(α), of four cubic exponential
sums, by a new block of three cubic exponential sums together with an exponential
sum over a fourth, fifth or sixth power. We concentrate on the case with three
cubes and a sixth power, since this provides a model for the treatment of the
remaining, easier cases. We require an estimate from Brüdern and Wooley [6] in
order to handle the mean value estimates which arise, and this forces us to introduce
further notation.

By and large we adopt the same notation as that which we employed in §2. It
is convenient, however, to recycle the latter notation by now writing

Q = P 7/8, Y = P 1/8,

and in addition defining the exponential sums

F (α) =
∑

P<x≤2P

e(αx3), b(α) =
∑

y∈A(
√

P,R)

e(αy6),

g(α) =
∑

1≤2j≤Y η

∑
2jY <p≤2j+1Y
p≡2 (mod 3)

∑
z∈A(P/(2jY ),R)

e(α(pz)3).

We then define the block G(α) of exponential sums central to our subsequent argu-
ment by

G(α) = F (α)g(α)2b(α).

It is the block G(α) which plays a role in this section similar to that played in §2
by the block F(α), defined in (2.2).
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Lemma 3.1. Suppose that X is a real number with 1 ≤ X ≤ P . Then there is a
fixed positive number τ with the property that∫

m(X)

|G(α)|2dα � P 4X−τ .

Proof. This is an immediate consequence of Theorem 4 of Brüdern and Wooley [6].

It is expedient to make use of a sharper version of the corollary to Lemma 2.1
in the pruning argument which occurs in our endgame analysis.

Lemma 3.2. Suppose that X is a large real number. Let φ be an integral quadratic
polynomial with positive leading coefficient. Let κ be a fixed positive real number
and let A ⊆ N ∩ [1, κX1/2]. Define

Fj(α) =
∑

y≤X1/j

e(αyj), G(α) =
∑
n∈A

e(αφ(n)).

Then ∫ 1

0

|G(α)F4(α)2|2dα � X(log X)ε

and ∫ 1

0

|G(α)F3(α)F6(α)|2dα � X(log X)ε.

Proof. This consequence of the work of Tenenbaum [9], Hooley [8] and Hall and
Tenenbaum [7] is Lemma 3.1 of Brüdern, Kawada and Wooley [4].

An assault on the proof of Theorem 1.3 is now possible in easy stages.

The proof of Theorem 1.3. We again dispose of all the cases simultaneously. Let φi

denote an integral polynomial of degree i with positive leading coefficient. When
i = 2, 3, 4 or 6, we now denote by Z l,k

i (N) the set of all integers n with N < n ≤
6
√

2N for which the diophantine equation

φi(n) = x3
1 + x3

2 + x3
3 + x6

4 + yl + zk

has no solution in positive integers x1, . . . , x4, y, z. In the cases under consideration,
we have that {i, k, l} is one of {2, 3, 6} or {2, 4, 4}, in the obvious sense. We aim to
show that for such appropriate choices of (i, k, l), one has card(Z l,k

i (N)) = o(N),
whence the conclusions of Theorem 1.3 follow by summing over dyadic intervals.

Define the parameter P and the exponential sums Ki(α) and H(α) as in (2.12)–
(2.14). Then arguing as in the proof of Lemma 2.1 of Brüdern, Kawada and Wooley
[2] (see also the treatment of the major arcs N in the proof of Lemma 2.1 of Brüdern,
Kawada and Wooley [5]), one finds that uniformly for 4P 3 ≤ m ≤ 18P 3, one has
the estimate ∫

N

G(α)fl(α)fk(α)e(−αm)dα �
√

Pfl(0)fk(0).
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Consequently, an argument akin to that yielding (2.9) on this occasion leads to the
lower bound ∣∣∣ ∫

n

G(α)H(α)dα
∣∣∣� √

PH(0). (3.1)

We take ω = 10−4, and write P = M(Pω) and p = [0, 1) \ P. Then by the
corollary to Lemma 2.1, it follows that the upper bound∫ 1

0

|H(α)|2dα � P 3+ε

holds in all cases under consideration. Consequently, an application of Schwarz’s
inequality in combination with Lemma 3.1 reveals that∫

p

|G(α)H(α)|dα ≤
(∫

p

|G(α)|2dα
)1/2(∫ 1

0

|H(α)|2dα
)1/2

� P 7/2−σ, (3.2)

for a suitable positive number σ.
In case (a) of Theorem 1.3, we have i = 2, and an application of Schwarz’s

inequality yields∫
n∩P

|G(α)H(α)|dα �
(∫

n

|G(α)|2dα
)1/2(∫ 1

0

|K2(α)fl(α)fk(α)|2dα
)1/2

.

We may apply Lemma 3.1 to the first integral on the right hand side, and Lemma
3.2 to the second. In this way we obtain the estimate∫

n∩P

|G(α)H(α)|dα � P 7/2(log P )−σ, (3.3)

for a suitable positive number σ.
The bound (3.3) holds in all other cases of Theorem 1.3 as well, as we now

demonstrate. The estimates all depend on the mean value

K =
∫ 1

0

|f2(α)g(α)b(α)|2dα,

for which, by considering the underlying diophantine equation, Lemma 3.2 yields
the bound

K � P 3(log P )ε.

In case (b), we have i = 3, l = 2, k = 6, and Hölder’s inequality produces∫
n∩P

|G(α)H(α)|dα �K1/2
(∫ 1

0

|g(α)|8dα
)1/8(∫

P

|f6(α)|8dα
)1/8

×
(∫ 1

0

|K3(α)|12dα
)1/12(∫

n∩P

|F (α)|6dα
)1/6

.
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On considering the underlying diophantine equation and invoking Theorem 2 of
Vaughan [10], one finds that ∫ 1

0

|g(α)|8dα � P 5.

The methods of Chapter 2 of Vaughan [12] will readily confirm the bound∫ 1

0

|K3(α)|12dα ≤
∫ 1

0

∣∣∣ ∑
n≤2N

e(αφ3(n))
∣∣∣12dα � P 9.

Finally, by the methods of Section 4.4 of Vaughan [12] (see, in particular, Lemma
4.9 and the proof of Theorem 4.4), one readily establishes that∫

P

|f6(α)|8dα � P and
∫

n∩P

|F (α)|6dα � P 3Lε−2/3.

Collecting together the above estimates, we obtain (3.3) in case (b). Case (d) is
quite similar. Here i = 6, l = 2, k = 3, and we again use Hölder’s inequality and
the trivial bound |K6(α)| ≤ K6(0) �

√
P to show that∫

n∩P

|G(α)H(α)|dα �K6(0)K1/2
(∫ 1

0

|g(α)|8dα
)1/8(∫

n∩P

|f3(α)|16/3dα
)3/16

×
(∫

n∩P

|F (α)|16/3dα
)3/16

.

Here we note that again by the methods of Section 4.4 of Vaughan [12], one has∫
n∩P

|F (α)|16/3dα � P 7/3Lε−4/9,

and the same estimate holds with F replaced by f3 (since, of course, the generating
functions F and f3 are identical). Now (3.3) follows as in case (b).

In case (c) we have i = 4, l = 2, k = 4. We bound K4(α) trivially, and use
Hölder’s inequality in the form∫

n∩P

|G(α)H(α)|dα �K4(0)K1/2
(∫ 1

0

|g(α)|8dα
)1/8(∫

n∩P

|F (α)|16/3dα
)3/16

×
(∫

P

|f4(α)|16/3dα
)3/16

.

Now, in order to confirm (3.3) in this final case, it suffices to add to the previous
mean values the estimate∫

P

|f4(α)|16/3dα � (P 3/4)16/3−4 = P,
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which is again a straightforward consequence of the methods of Section 4.4 of
Vaughan [12], since 16/3 exceeds 5.

Having now established (3.3) in all cases, we combine this bound with (3.1) and
(3.2) to infer that

√
PH(0) �

∫
p

|G(α)H(α)|dα +
∫

n∩P

|G(α)H(α)|dα � P 7/2(log P )−σ,

whence, in view of (2.4), (2.13) and (2.14), the upper bound card(Z l,k
i (N)) �

N(log N)−σ follows in all cases under consideration. This completes the proof of
Theorem 1.3.

4. Sums of four cubes and a square. The existence of a square in a given
representation problem permits a powerful application of Weyl’s inequality for the
associated exponential sum. The difficulties to be negotiated in the prosecution of
our methods are then shifted to the problem of pruning back to a sufficiently narrow
set of major arcs, as will become evident in our proof of Theorem 1.4 below. In
what follows, it is convenient to discard the notation of the previous two sections
and begin anew. It is useful to record for future use the following mean value
estimate.

Lemma 4.1. Let U(X) denote the number of solutions of the diophantine equation

x3
1 − x3

2 = y3
1 + y3

2 − y3
3 − y3

4 ,

with 1 ≤ xi ≤ 2X (i = 1, 2) and yj ∈ A(X, Xη) (1 ≤ j ≤ 4). Then provided that
η > 0 is sufficiently small, one has

U(X) � X13/4−2η.

Proof. The conclusion of the lemma follows from Theorem 1.2 of Wooley [21].

The proof of Theorem 1.4. Let φ3 ∈ Q[t] denote an integral cubic polynomial with
positive leading coefficient. We denote by Z(N) the set of all integers n with
N/2 < n ≤ N for which the diophantine equation

φ3(n) = x3
1 + x3

2 + x3
3 + x3

4 + y2

has no solution in positive integers x1, . . . , x4, y. We aim to show that card(Z(N)) =
o(N), and just as in previous discussions, the conclusion of Theorem 1.4 will follow
by summing over dyadic intervals.

When k = 2 and 3, define the parameter Pk by means of the relation Pk =
(φ3(N))1/k, and then define

Fk(α) =
∑

x≤Pk

e(αxk) and fk(α) =
∑

y∈A(Pk,P η
k )

e(αyk),
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where η is a sufficiently small positive number. Write also

K(α) =
∑

n∈Z(N)

e(αφ3(n)).

When 1 ≤ Q ≤ N3/2, we define the major arcs M(Q) to be the union of the
intervals

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| ≤ QN−3},

with 0 ≤ a ≤ q ≤ Q and (a, q) = 1. For the sake of concision, we write

M = M(N4/3) and N = M(L),

where L = (log N)1/100. We also write m = [0, 1) \M and n = [0, 1) \N.
Observe first that the definition of Z(N) implies the identity∫ 1

0

F2(α)F3(α)2f3(α)2K(−α)dα = 0. (4.1)

Next, in a manner similar to the treatments applied in previous examples, the
methods of Vaughan [11], Vaughan [12, §4.4], and Vaughan and Wooley [13] provide
the lower bound ∫

N

F2(α)F3(α)2f3(α)2e(−αm)dα � P2P3,

uniformly for φ3(N/2) < m ≤ φ3(N). Thus it follows from (4.1) that

N5/2card(Z(N)) �
∫

n

|F2(α)F3(α)2f3(α)2K(α)|dα. (4.2)

We next remove the minor arcs m from the integral on the right hand side. By
Weyl’s inequality (see, for example, Lemma 2.4 of Vaughan [12]), one has

sup
α∈m

|F2(α)| � P 1+ε
2 N−2/3 � N5/6+ε. (4.3)

Consequently, on recalling Lemma 4.1 and Hua’s Lemma (see Lemma 2.5 of Vaughan
[12]), and considering the underlying diophantine equations, one deduces that∫

m

|F2(α)F3(α)2f3(α)2K(α)|dα

�
(

sup
α∈m

|F2(α)|
)(∫ 1

0

|F3(α)f3(α)2|2dα
)1/2

×
(∫ 1

0

|F3(α)|4dα
)1/4(∫ 1

0

|K(α)|4dα
)1/4

�N5/6+ε(P 13/4−τ
3 )1/2(P 2+ε

3 )1/4(N2+ε)1/4,
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for a suitable positive number τ . We thus obtain the upper bound∫
m

|F2(α)F3(α)2f3(α)2K(α)|dα � N83/24 � P2P3N
23/24. (4.4)

In order to proceed further we recall some notation. When k = 2 or 3, define
the generating functions

Sk(q, a) =
q∑

r=1

e(ark/q), vk(β) =
∫ Pk

0

e(βγk)dγ,

and define the functions F ∗k (α) for α ∈ M(q, a;N4/3) ⊆ M by taking

F ∗k (α) = q−1Sk(q, a)vk(α− a/q).

Then by Theorem 4.1 of Vaughan [12], for k = 2 or 3,

sup
α∈M

|Fk(α)− F ∗k (α)| � N2/3+ε, (4.5)

and by Lemma 4.6 of Vaughan [12], one also has

|F ∗k (α)| � Pk(q + N3|qα− a|)−1/k. (4.6)

A comparison of (4.5) and (4.3) reveals that the treatment of the minor arcs m is
readily modified to show that∫

M

|(F2(α)− F ∗2 (α))F3(α)2f3(α)2K(α)|dα � P2P3N
23/24. (4.7)

We observe next that in view of (4.6), it follows from Lemma 2 of Brüdern [1] that∫
M

|F ∗2 (α)K(α)|2dα � N7/3+ε. (4.8)

Thus an application of Schwarz’s inequality combined with (4.5) and Lemma 4.1
leads to the estimate∫

M

|(F3(α)−F ∗3 (α))F ∗2 (α)F3(α)f3(α)2K(α)|dα

� N2/3+ε
(∫

M

|F ∗2 (α)K(α)|2dα
)1/2(∫ 1

0

|F3(α)f3(α)2|2dα
)1/2

� N2/3+ε(N7/3+ε)1/2(P 13/4−τ
3 )1/2 � P2P3N

23/24. (4.9)

Here again τ is used to denote a suitable positive real number.
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The next two steps in the main argument require some additional mean values
which we now collect. On considering the underlying diophantine equations, the
methods of Chapter 2 of Vaughan [12] suffice to confirm the bounds∫ 1

0

|f3(α)|10dα � P 7
3 and

∫ 1

0

|K(α)|10dα � P 7
3 . (4.10)

Similarly, by Hua’s Lemma (see Lemma 2.5 of Vaughan [12]), one has∫ 1

0

|f3(α)|8dα � P 5+ε
3 .

A straightforward application of the Hardy-Littlewood method, using Lemma 4.9
of Vaughan [12], demonstrates that∫

M

|F ∗3 (α)|4dα � P 1+ε
3 ,

and in much the same way we confirm the bound∫
M∩n

|F ∗3 (α)|30/7dα � P
9/7
3 Lε−2/21. (4.11)

Finally, as an elementary consequence of (4.6), one has∫
M

|F ∗2 (α)|30/7dα � P
30/7
2 N−3. (4.12)

By Hölder’s inequality, the estimates (4.5) and (4.8), and the above mean values,
we deduce that∫

M

|(F3(α)− F ∗3 (α))F ∗2 (α)F ∗3 (α)f3(α)2K(α)|dα

� N2/3+ε
(∫

M

|F ∗2 (α)K(α)|2dα
)1/2(∫ 1

0

|f3(α)|8dα
)1/4(∫

M

|F ∗3 (α)|4dα
)1/4

� N2/3+ε(N7/3+ε)1/2(P 5+ε
3 )1/4(P 1+ε

3 )1/4 � P2P3N
5/6+ε. (4.13)

On collecting together (4.2), (4.4), (4.7), (4.9) and (4.13), we may conclude thus
far that

N5/2card(Z(N)) �
∫

M∩n

|F ∗2 (α)F ∗3 (α)2f3(α)2K(α)|dα + O(P2P3N
23/24). (4.14)

An application of Hölder’s inequality, making use of the bounds (4.10), (4.11)
and (4.12), shows that∫

M∩n

|F ∗2 (α)F ∗3 (α)2f3(α)2K(α)|dα

�
(∫

M

|F ∗2 (α)|30/7dα
)7/30(∫

M∩n

|F ∗3 (α)|30/7dα
)7/15

×
(∫ 1

0

|f3(α)|10dα
)1/5(∫ 1

0

|K(α)|10dα
)1/10

�N7/2Lε−2/45.
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Thus we may conclude from (4.14) that card(Z(N)) � NLε−2/45, and the conclu-
sion of the theorem follows on summing over dyadic intervals.

By working harder on the major arcs, it is possible to refine the above argument
to obtain the estimate card(Z(N)) � N23/24. In accordance with the opening
comments of this paper, we leave it to the reader to provide the details of such a
refinement. The inquisitive readers possessing an unexpected abundance of leisure
time may also care to entertain themselves by establishing that almost all values of
a given integral quadratic polynomial are the sum of a square, a cube, a biquadrate,
a fifth power, a sixth power and a seventh power.

5. Waring’s problem for larger exponents in general. Moving in this sec-
tion from the more exotic problems involving mixed sums of powers, to the more
classical Waring’s problem for kth powers, our objective is the proof of Theorem
1.5 for polynomial sequences of degree exceeding 2. We do not aim here for esti-
mates possessing the sharpest error terms, preferring at this point concision over
precision. In the next section, we satisfy our desire for sharp conclusions with a
more detailed account of quadratic sequences. We begin here by recording some
notation. Let φ(t) = φl(t) be an integral polynomial of degree l ≥ 2 with positive
leading coefficient, and suppose that k is sufficiently large. We take N to be a large
real number, and write

P = φl(N)1/k, L = (log P )1/100 and R = P η,

where η > 0 is supposed to be sufficiently small. We remark that the first of these
relations implies that P � N l/k. We then write

H(α) =
∑
x≤P

e(αxk) and h(α) =
∑

x∈A(P,R)

e(αxk).

Before advancing to the main body of our argument, we pause to record some
auxiliary mean value estimates. Here it is convenient to introduce some notation
for Hardy-Littlewood dissections. When Q is a positive number, we define the set
of major arcs M(Q) to be the union of the intervals

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| ≤ QP−k},

with 0 ≤ a ≤ q ≤ Q and (a, q) = 1. For the sake of brevity, we then write

M = M(P ), N = M(L), m = [0, 1) \M, n = [0, 1) \N.

Lemma 5.1. Define the natural numbers m, t, u, v, w by

m = d( 1
4 + 1

2 log 2)ke, u = d 1
2k(1 + 1/

√
log k)e, v = k,

t = d 1
2k(log k + log log k + 1)e
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and
w = d 1

2 (1− 2
l )k(log k + log log k + 1)e+ d3(1− 2

l )ke.

Then we have ∫ 1

0

|H(α)2h(α)2m−2|dα � P 2m−k/2, (5.1)

∫ 1

0

|h(α)|2(t+u)dα � P 2(t+u)−k, (5.2)

∫ 1

0

|h(α)|2vldα � P 2vl−k(1−2−l), (5.3)

and when l > 2, one has also∫ 1

0

|h(α)|2wl/(l−2)dα � P 2wl/(l−2)−k. (5.4)

Proof. We recall that the methods of Wooley [18] (see the conclusion of §3 of [18]
and the corollary to Theorem 2.1 of [19]) provide the upper bounds∫ 1

0

|H(α)2h(α)2r−2|dα � P 2r−k+∆r+ε, (5.5)

and ∫ 1

0

|h(α)|2rdα � P 2r−k+∆r+ε, (5.6)

where ∆r is the positive number satisfying the equation

∆re
∆r/k = ke1−2r/k. (5.7)

In particular, of course, one has ∆r < ke1−2r/k. In addition, Theorem 1.1 of Wooley
[20] shows that

sup
α∈m

|h(α)| � P 1−ρ(k), (5.8)

where ρ(k)−1 = k(log k + O(log log k)).
We note first that since m > ( 1

4 + 1
2 log 2)k, it follows from (5.5) and (5.7) that∫ 1

0

|H(α)2h(α)2m−2|dα � P 2m−k+∆m+ε,

where ∆m satisfies the inequality ∆me∆m/k < 1
2e1/2k. The latter inequality implies

that ∆m < k/2, and so (5.1) follows immediately. Also, since

∆vl ≤ ke1−2vl/k = ke1−2l < k2−l,
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we find from (5.6) that the estimate (5.3) also holds. Furthermore, since wl/(l−2) ≥
t + u, possibly by employing the trivial estimate |h(α)| ≤ P , one finds that (5.4) is
an immediate consequence of (5.2).

In view of the preceding remarks, we concentrate on establishing the bound (5.2).
Here we apply the Hardy-Littlewood method. By (5.5) and (5.7), one has∫ 1

0

|H(α)2h(α)2t−2|dα � P 2t−k+∆t+ε,

where
∆t < k exp(1− (log k + log log k + 1)) = 1/ log k.

Thus, on recalling (5.8), one finds that∫
m

|H(α)2h(α)2(t+u)−2|dα ≤
(

sup
α∈m

|h(α)|
)2u

∫ 1

0

|H(α)2h(α)2t−2|dα

� P 2(t+u)−k−δ, (5.9)

where

δ = 2uρ(k)− 1
log k

=
1

(log k)3/2
+ O

(
log log k

(log k)2

)
> 0.

On the other hand, a familiar treatment of the major arcs M (see, for example, §5
of Vaughan [11]) reveals that∫

M

|H(α)2h(α)2(t+u)−2|dα � P 2(t+u)−k. (5.10)

On combining (5.9) and (5.10), we deduce that∫ 1

0

|H(α)2h(α)2(t+u)−2|dα

=
∫

M

|H(α)2h(α)2(t+u)−2|dα +
∫

m

|H(α)2h(α)2(t+u)−2|dα

� P 2(t+u)−k,

so that on considering the underlying diophantine equation, we find that∫ 1

0

|h(α)|2(t+u)dα ≤
∫ 1

0

|H(α)2h(α)2(t+u)−2|dα

� P 2(t+u)−k.

This completes the proof of the lemma.
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We are now equipped to describe the proof of Theorem 1.5 when d = l > 2.
Write

s1 = d(1− 1/l)k(log k + log log k + 20)e, (5.11)

and put s = s1 +2. We denote by Z(N) the set of integers n with N/2 < n ≤ N for
which the diophantine equation (1.1) has no solution in positive integers x1, . . . , xs.
We aim to show that card(Z(N)) = o(N), whence as usual the desired conclusion
follows by summing over dyadic intervals.

Define the exponential sum

Kl(α) =
∑

n∈Z(N)

e(αφl(n)).

Then it follows from the definition of Z(N) that∫ 1

0

H(α)2h(α)s1Kl(−α)dα = 0. (5.12)

In a manner similar to, but simpler than, the treatments of previous sections, the
methods of Vaughan [11], Vaughan [12, §4.4], and Vaughan and Wooley [13] lead
to the lower bound ∫

N

H(α)2h(α)s1e(−αn)dα � P s−k,

uniformly for 2−1−lP k < n ≤ P k, provided only that s ≥ 4k. Thus, when k is
sufficiently large, it follows from (5.12) that

P s−kcard(Z(N)) �
∫

n

|H(α)2h(α)s1Kl(α)|dα. (5.13)

Standard pruning arguments based on the above cited methods establish the esti-
mate ∫

n∩M

|H(α)2h(α)s1 |dα � P s−kL−1/k,

whence by a trivial estimate for Kl(α), we deduce from (5.13) that∫
m

|H(α)2h(α)s1Kl(α)|dα � P s−kcard(Z(N)). (5.14)

We next apply Lemma 4.1 of Brüdern, Kawada and Wooley [4] with

F(α) = h(α)t+u, G(α) = h(α)v, H(α) = h(α)w.

On noting that P k � N l, we find that the conclusions (5.2)–(5.4) of Lemma 5.1
above imply the validity of the hypotheses (4.1)–(4.3) of [4, Lemma 4.1]. Since the
latter lemma provides the upper bound∫ 1

0

|Kl(α)F(α)G(α)2H(α)|dα � N−l+1+εF(0)G(0)2H(0),
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on recalling the definition (5.11) of s1, and applying the trivial bound |h(α)| ≤ P ,
we conclude that ∫ 1

0

|Kl(α)h(α)s1 |dα � P s1N−l+1+ε.

But by Weyl’s inequality (see, for example, Lemma 2.4 of Vaughan [12]), one has

sup
α∈m

|H(α)| � P 1−21−k+ε,

and thus it follows that∫
m

|H(α)2h(α)s1Kl(α)|dα ≤
(

sup
α∈m

|H(α)|
)2
∫ 1

0

|Kl(α)h(α)s1 |dα

� P s−21−k

N1−l.

On recalling once again that N l � P k, we conclude from (5.14) that

P sN−lcard(Z(N)) � P s−21−k

N1−l,

whence card(Z(N)) � N1−21−kl/k. On summing over dyadic intervals, we therefore
find that G+

l (k) ≤ s, and the conclusion of Theorem 1.5 follows whenever d = l > 2.

6. Waring’s problem for larger exponents and quadratic sequences. The
proof of Theorem 1.5 is completed with only slight additional effort, and since the
proof of Theorem 1.6 involves only a modicum of extra exertion, we take care of both
tasks together. We remark, however, that for reasons depending on local solubility
considerations, our argument so far as the proof of Theorem 1.6 is concerned for
k = 4 and 8 is better handled by way of the proof of Theorem 1.7. In addition, the
exponent k = 6 requires a slightly more subtle approach, a topic that we discuss
briefly in due course.

We adopt the same notation as that employed in §5, save that l is now set equal
to 2. Let m be any integer satisfying the condition that the estimate (5.1) holds.
In particular, when k is large, it follows from Lemma 5.1 that

m = d( 1
4 + 1

2 log 2)ke (6.1)

is permissible. For smaller values of k, one may read from the tables of Vaughan and
Wooley [16, 17] that the values of m recorded in the table below are permissible.
Also, let a be any integer satisfying the condition that the upper bound∫

m

|H(α)2h(α)2a−2|dα � P 2a−k−τ (6.2)

holds for some positive number τ . Thus, when k is large, one finds from the estimate
(5.9) that

a = d 1
2k(log k + log log k + 2 + 1/

√
log k)e+ 2 (6.3)
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is permissible. For smaller values of k, one may again verify from the tables and
methods of Vaughan and Wooley [16, 17] that the values of a recorded in the table
below suffice (excluding the case k = 6).

k 5 6 7 8 9 10 11 12
m 3 4 4 5 5 6 7 7
a 9 12 17 21 25 30 34 38

k 13 14 15 16 17 18 19 20
m 8 8 9 10 10 11 11 12
a 42 46 50 55 59 63 67 71

We now set s = m + a, s1 = s − 2, and define Z(N) and Kl(α) as in §5. The
argument of §5 now leads us, without further alteration, to the conclusion (5.14).
In order to estimate the left hand side of (5.14), we apply Schwarz’s inequality to
obtain ∫

m

|K2(α)H(α)2h(α)s1 |dα ≤ I1/2
1 I1/2

2 , (6.4)

where

I1 =
∫ 1

0

|K2(α)2H(α)2h(α)2m−2|dα and I2 =
∫

m

|H(α)2h(α)2a−2|dα.

On considering the underlying diophantine equation, we find that I1 is bounded
above by the number of integral solutions of the equation

φ2(n1)− φ2(n2) =
m∑

i=1

(xk
i − yk

i ), (6.5)

with nj ∈ Z(N) (j = 1, 2), x1, y1 ≤ P and xi, yi ∈ A(P,R) (2 ≤ i ≤ m). On
recalling that the polynomial φ2 is quadratic, we find that an elementary estimate
for the divisor function shows that for a fixed choice of x and y for which the right
hand side of (6.5) is non-zero, one has that the number of solutions n1, n2 of (6.5)
counted by I1 is O(Nε). When the right hand side of (6.5) is zero, meanwhile, one
necessarily has n1 = n2. Consequently, on considering the underlying diophantine
equation, one obtains

I1 � N

∫ 1

0

|H(α)2h(α)2m−2|dα + NεP 2m,

whence by the assumed estimate (5.1) and the relation P k � N2,

I1 � NP 2m−k/2 + NεP 2m � P 2m+ε.
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In view of (6.2), therefore, we deduce from (6.4) that∫
m

|K2(α)H(α)2h(α)s1 |dα � (P 2a−k−τ )1/2(P 2m+ε)1/2

� P s−k/2−τ/3. (6.6)

On substituting (6.6) into (5.14), we arrive at the bound

P s−kcard(Z(N)) � P s−k/2−τ/3,

whence the relation P k � N2 reveals that

card(Z(N)) � P k/2−τ/3 � N1−σ,

for a positive number σ. On summing over dyadic intervals, we therefore conclude
that G+

2 (k) ≤ m + a, and in view of (6.1), (6.3) and the entries in the above table,
the proofs of Theorems 1.5 and 1.6 are now complete in the cases currently under
consideration.

We return briefly to the topic of the exponent k = 6. Here the estimate (6.2) is
no longer available directly from the work of Vaughan and Wooley [16, 17]. In this
case one must replace the occurrence of h(α) in (6.2) by the new exponential sum

h(α) =
∑

P θ≤M≤P θ+τ

M=2uP θ

∑
M<p≤2M

p≡−1 (mod 6)

∑
y∈A(P/M,R)

e(α(py)6),

with a certain real number θ slightly smaller than 0.154543, and with τ > 0 suf-
ficiently small. The details can be found in Vaughan and Wooley [15], where the
reader will discover that the desired estimate (6.2) follows from Lemma 6.5 of [15]
following some modest pruning of the type implicit in Lemma 7.1 of that paper.
With this adjustment, the argument described above again applies, though the
treatment of the major arcs M necessarily becomes somewhat more elaborate. We
leave the verification of all the details of this argument as an entertaining exercise
for the reader.

Finally, we remark that the only significant complications associated with the
treatment of the cases k = 4 and 8 concern the congruence conditions stemming
from the prime 2. When k = 8, one must negotiate a congruence condition modulo
32, and when k = 4, there is a congruence condition modulo 16. A brief discussion
of this issue is contained in the following sketch of the proof of Theorem 1.7(i).

The proof of Theorem 1.7(i). Let φ2(n) be an integral quadratic polynomial with
positive leading coefficient. We denote by Z(N) the set of all integers n with
N/2 < n ≤ N for which φ2(n) satisfies the congruence condition in the statement
of Theorem 1.7(i), and yet the diophantine equation

φ2(n) = x4
1 + x4

2 + · · ·+ x4
8+t
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has no solution in positive integers x1, . . . x8+t. Write P = φ2(N)1/4 and L =
(log P )1/100, and define

F (α) =
∑
x≤P

e(αx4), f(α) =
∑

x∈A(P,R)

e(αx4).

Define the major arcs N to be the union of the intervals

N(q, a) = {α ∈ [0, 1) : |qα− a| ≤ LP−4},

with 0 ≤ a ≤ q ≤ L and (a, q) = 1, and define n = [0, 1) \N.
The methods of Vaughan [11], as in the previous examples of this paper, show

that uniformly for P 4/6 ≤ m ≤ 6P 4 with m ≡ r (mod 16) and 1 ≤ r ≤ 8 + t, one
has the estimate ∫

N

F (α)3f(α)5+te(−αm)dα � P 4+t,

and by the now familiar routine we deduce that∣∣∣ ∫
n

F (α)3f(α)5+tK2(−α)dα
∣∣∣� P 4+tcard(Z(N)). (6.7)

On the other hand, on combining methods of Vaughan [11] and Wooley [18] with
the conclusion of Lemma 3.2, one obtains by Schwarz’s inequality∫

n

|F (α)3f(α)5+tK2(α)|dα

≤
(∫ 1

0

|K2(α)F (α)2|2dα
)1/2(∫

n

|F (α)f(α)5+t|2dα
)1/2

� (P 4(log P )ε)1/2(P 8+2t(log P )−3σ)1/2, (6.8)

for a suitable positive number σ. Combining (6.7) and (6.8), we deduce that

card(Z(N)) � P 2(log P )−σ � N(log N)−σ,

and thus the desired conclusion follows on summing over dyadic intervals.
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